Agenda

• Florida Friendly Landscaping and GI-BMP
• Equine Best Management Practices
• Pasture Management Strategies
Objectives: Equine BMPs

- Examine the current situation.
- Why should we care?
- Describe the legislative processes involved with springs/water protection.
- What can you do moving forward?
Water in Florida

- Florida is home to 20+ million people.
- 3rd largest state!
- “No one retires and moves North”
- 1,000 People move here each day.
- Home to over 700 freshwater springs that feed the aquifers we rely on.
- Will require a 20% increase in water by 2030.

“Florida is home to more large (first and second magnitude) springs than any other state in the nation. Springs are the window into the health of our groundwater, which is the source of 90 percent of drinking water for Floridians.” - DEP

https://floridadep.gov/springs/
Water in Marion County

- Marion County is home to 355,000+ people.
- Prime location - Disney, rural lands, retirement destination.
- Springs and “chain of lakes” = water problems are easily transferrable.
Current Situation

- All of these water sources have been under scrutiny for water quality concerns.

- Point source pollution - we can trace it back.
 - Wastewater treatment plants, factories

- Non-point source pollution - difficult to trace and hard to correct.
 - Agriculture
 - Residential landscapes
Point and Nonpoint Sources
What’s the big deal?

- Eutrophication: Excessive richness of nutrients in a lake or other body of water, frequently due to runoff from the land, which causes a dense growth of plant life and death of animal life from lack of oxygen.

- Nitrogen and Phosphorus are common “nutrients” in the agricultural realm.
 - These *nutrients* become *pollutants*.
Algal Blooms → Reduced Sunlight → Reduced Oxygen

Aquatic Life Withers → Water Quality Impairment
Florida Department of Environmental Protection

• Develops plans for the areas surrounding these waters: *Basin Management Action Plans* (BMAP)

• BMAPs are on a 20 year continuum and are revised every 5 years.

• These plans aim to reduce the overall nutrient loading of these waters which feed the aquifers.

• BMAPs are in place to reduce *Total Maximum Daily Loads (TMDL)* of a nutrient/pollutant.

 • *TMDL* - the maximum amount of a nutrient that can enter a water body and still allow that water body to meet water quality standards.
FFL protects Florida's unique natural resources by conserving water, reducing pollution, creating wildlife habitat, and preventing erosion.

Any landscape can be Florida-Friendly!
Florida-Friendly Landscaping™ Program

- FYN Home Owner
- FYN Builder Developer
- GI-BMP
Agriculture in BMAPs

• As agriculturists, the land does not work for you, you work for the land.

• What are BMP’s?
 - BMP’s are field tested practices said to be most effective for improving water quality.
Equine Best Management Practices

- Nutrient Management
- Manure Management
- Sediment & Erosion Control
- Pasture Management
- Stormwater Management
- Water Resource Protection
- Equine Watering Requirements & Sources
- Animal Mortality Management
Manure Management

• An average 1000 lb horse will produce close to 50 lbs of manure each day, almost 10 tons per year!

• Manure contains Nitrogen & Phosphorus- which if not managed properly could contribute to water quality impairment.

• What are some options for manure management?
Manure Management

• Haul it off- $$, makes the most sense for larger operations with limited space and man-power.

• Stockpile- This is an ok option as long as some criteria is met
 ➢ Impervious surface
 ➢ Not located near water source (Natural or well)
 ➢ Have means to cover the pile

• Compost- Turn waste into worth
Compost

- Easy, effective way to manage manure on a small farm.

- Composting raw manure will kill weed seeds, parasites, and pathogens.

- Reduce waste volume by 30-40%.

- Create a valuable soil amendment!
Rapid-fire compost how-to:

- **Moisture**: resemble a wrung out sponge 40-50% moisture.
- **Temperature**: 130-150 degrees
- **Oxygen**: Turn the pile to incorporate air, or insert PVC pipe with air holes.
- **Nitrogen:Carbon ratio**: 30:1 is ideal. Greens = Nitrogen & Browns = Carbon.
- **Time**: 4 months to generate a finished batch of compost. (Build structure accordingly).
Compost Examples:
Trouble Shooting:

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compost pile will not get hot</td>
<td>Pile may be too dry</td>
<td>Add water</td>
</tr>
<tr>
<td>Compost pile will not get hot</td>
<td>Pile may contain too much bedding (carbon)</td>
<td>Add fertilizer or manure to supply more nitrogen</td>
</tr>
<tr>
<td>Compost pile will not get hot</td>
<td>Pile may be too wet</td>
<td>Add more bulking materials; cover from rain</td>
</tr>
<tr>
<td>Compost has foul smell</td>
<td>Pile may be too wet</td>
<td>Add more bulking materials and turn pile</td>
</tr>
<tr>
<td>Compost has foul smell</td>
<td>Pile may need more air</td>
<td>Turn the pile more often</td>
</tr>
<tr>
<td>Compost has foul smell</td>
<td>Pile may contain a dead animal</td>
<td>Remove the carcass</td>
</tr>
<tr>
<td>Compost pile doesn’t seem to be breaking down</td>
<td>Pile may be too dry</td>
<td>Add water</td>
</tr>
<tr>
<td>Compost pile doesn’t seem to be breaking down</td>
<td>Pile may be too small; not holding heat</td>
<td>Build a bigger pile</td>
</tr>
<tr>
<td>Compost pile doesn’t seem to be breaking down</td>
<td>Pile might not contain enough nitrogen</td>
<td>Add fertilizer or manure to supply more nitrogen</td>
</tr>
</tbody>
</table>

How to ensure your farm is up to snuff?

- Contact your Extension Agent to ensure you are implementing BMPs.
- FDACS has a field technician that will formally enroll you in the BMP program with a Notice of Intent (NOI).
- “But I don’t want some governmental red-flag on my farm!”
- Actually...Enrolling in this program will have the opposite affect, DEP is busy.
- Many farms in Marion County are already enrolled!
What does the future hold?

• *Choices*...

• Sign up voluntarily with FDACS, **enroll** in the BMP program.

• **Monitor** your own water quality. (self-funded)

• Do nothing and risk the manure police (DEP) dropping in and subjecting you to monetary punishment until one of the above options is put in place.
Teamwork makes the dream work!

- The equine industry is a huge part of the culture here.
- Let’s serve as an example to other industries; greater good effect!
- UF/IFAS is NOT regulatory, we are an educational resource to help you.
- Start with your county extension agent and receive timely, pertinent information before this becomes a larger issue.
Resources:

- To get a free copy of the Equine Best Management Practices manual:

 visit-
 http://www.freshfromflorida.com/content/download/30687/760953/Equine_Updated.pdf

Or, stop by my office and pick one up!

Also available for pick up at FTBOA.
Pasture Management

- Good pasture management = following best management practices.

- Maximize forage yield
- Minimize cost of supplemental forages/feed
- Minimize weeds
- Minimize erosion
- Maintain root structure to uptake nutrients
- Aesthetic value of your farm
Pasture Management & Strategies

Soil → Grass → Animal Intake
Forage Potential

<table>
<thead>
<tr>
<th>Forage species</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
<th>Productivity* (lb DM/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limpograss</td>
<td></td>
<td>9000-12000</td>
</tr>
<tr>
<td>Pensacola Bahiagrass</td>
<td></td>
<td>3000-10000</td>
</tr>
<tr>
<td>Argentine Bahiagrass</td>
<td></td>
<td>5000-14000</td>
</tr>
<tr>
<td>Hybrid Bermudagrass</td>
<td></td>
<td>7000-14000</td>
</tr>
<tr>
<td>Pearl Millet</td>
<td></td>
<td>5000-10000</td>
</tr>
<tr>
<td>Rye</td>
<td></td>
<td>2000-5000</td>
</tr>
<tr>
<td>Oat</td>
<td></td>
<td>2000-5000</td>
</tr>
<tr>
<td>Annual Ryegrass</td>
<td></td>
<td>2000-5000</td>
</tr>
<tr>
<td>Alfalfa</td>
<td></td>
<td>5000-8000</td>
</tr>
<tr>
<td>Arrowleaf clover</td>
<td></td>
<td>2000-4000</td>
</tr>
<tr>
<td>Crimson Clover</td>
<td></td>
<td>2000-4000</td>
</tr>
<tr>
<td>White clover</td>
<td></td>
<td>2000-4000</td>
</tr>
</tbody>
</table>

Graphic from Marcelo Wallau, UF Agronomy Dept.
Starts with Soil!

• Don’t guess get a soil test every 2-3 years.

• Healthy soil requires:
 • Good pH
 • **Macronutrients**
 • **N** - Component of Chlorophyll (plants grow) and amino acid structure (not tested)
 • **P** - Metabolism, root development, and flower development
 • **K** - Temperature regulation, energy conversion from storage, immunity

 Secondary Nutrients - **Ca, Mg, S**

 Micronutrients
 • **B, Cu, Fe, Cl, Mn, Mo, Zn**
Tissue Test - Another soil tool

- Which nutrient does a tissue test help identify?
- Why is a soil analysis not always sufficient for Phosphorus?
- Gather a couple handfuls of leaves to be sent in for a tissue test - must perform a tissue test when there is tissue to test! (Not Winter)
 - Allow samples to dry
- A tissue test form can be obtained from the UF Soils lab website, or your local Extension Agent
Become a Grass Farmer

• Hay is expensive- How many of you buy hay year-round?

• Let’s talk: Stocking rate
• It is NOT a one size fits all rule. *Land type, soil type, features, and amount of land* will determine your carrying capacity.

• How can we maximize space on a small farm?
Methods to maximize space on a small farm:

• **Rotational grazing**
 - Rotate on a schedule that will allow the grass to recover - 3 week minimum in the growing season!
 - **Grazing rule:** *Allow animals to graze when grass is 8” and remove them when grass is grazed to 3”.*

• **Sacrifice area**
 - Locate near water & shade with forage available.

• **Turn-out schedule**
 - Summer vs. Winter - up during the day when it is hot, out at night.

Stocking Recommendations:
- Horses - 1 horse/ 2-5 acres
- Cows - 1 Cow/ 1.5-4 acres
Grazing Management

Carrying Capacity, Stocking Rate, # of animals

Rotational grazing - Resting period

Sacrifice areas - Could be the tipping point for your horse operation.

Turn-out schedules (Horses)

Plant cool-season annuals
“I need to re-seed my Bahiagrass”

- Bahiagrass is a marathon runner, not a sprinter.
- Establishment is costly, make sure you do it correct.
- Key Elements:
 - **Water** - moisture is paramount to success of establishment!
 - **Temperature** - 80 degree soil temperature for the seeds to germinate.
 - **Fertilization** - Fertilize according to a soil analysis for new establishment, split application is preferred.
Bahiagrass

Top Growth affects Root Growth

Never Grazed

1x 90% Leaf Removed

50% (3-d) Leaf Removed

90% (3-d) Leaf Removed

Mary Goodman, Auburn Univ.
Weed management in Bahiagrass

• What is a weed?

• What do weeds need to grow:
 ➢ Sunlight
 ➢ Water
 ➢ Space
 ➢ Nutrients

What is the problem here?
Weed management cont.

- The best approach to weed management is an integrated approach:
 - **Mechanical control** - Mowing
 - **Biological control** - Beetles
 - **Chemical control** - Herbicides: *Follow the label and understand how to calibrate your equipment if spraying yourself.*

 Weeds are best targeted when they are immature.
Toxic Weeds

• Largest economical loss due to weeds is animal deaths.
• Scout your pastures, ask your extension agent for help.
• Pasture management/grazing management is the best prevention!
• Understand proper herbicide application for the species you want to kill.

• *Take a poster!*
Toxic Weeds

Creeping Indigo: GrazonNext HL

Showy Crotalaria “rattlebox”: GrazonNext HL, Pastureguard, Glyphosate
Toxic Weeds

Nightshade: GrazonNext HL, Glyphosate, Milestone...

Lantana: Dig it up, Glyphosate
Toxic Weeds

Sicklepod: 2, 4-D, GrazonNext HL, Glyphosate

Castor Bean: Glyphosate
Cool Season Forages

- **Annual Ryegrass** is a great option:
 - Broadcast or drill
 - Productive
 - Quality forage (Jan- March)
- **Oat**
- **Clovers**

- Secondary Benefits to a cool-season forage:
 - Maintain root structure
 - Recycle nutrients
 - If utilizing a legume (clover) potential to add Nitrogen to the system.
 - Green pasture in the winter
In summary

• **Be a soil enthusiast, then a grass farmer, then a horse farmer.**
Maxine Hunter
Caitlin Bainum
UF/IFAS Extension Marion County
(352) 671-8400
maxine32666@ufl.edu
cbainum@ufl.edu